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Abstract19

Species that migrate long distances or between distinct habitats – e.g. anadromous or catadromous fish20

– experience the consequences of climate change in each habitat and are therefore particularly at risk in a21

changing world. Studies of anadromous species often focus on freshwater despite the ocean’s disproportionate22

influence on survival and growth. To understand a prominent anadromous species’ response to ocean climate,23

we use a new spatio-temporal model jointly estimating the ocean distribution of all major fall-run Chinook24

salmon (Oncorhynchus tshawytscha, Salmonidae) stocks from California to British Columbia over 40 years.25

We model hundreds of millions of tagged individuals, finding that different stocks have fundamentally different26

ocean distributions, distinct associations with sea surface temperature (SST), and contrasting distributional27

responses to historical ocean SST variation. We show species-level estimates of ocean distribution that28

ignore among stock variation will lead to errant predictions of spatial distribution. Using future (2030-2090)29

SST projections to model focal stocks of fisheries importance we predict substantial ocean re-distribution in30

response to SST change. Predicted aggregate distributional changes do not follow a simple, poleward shift.31

Instead, we predict net movement into some ocean regions (British Columbia, central California) but net32

movement out of others (northern California, Washington). Distribution shifts have implications for both33

major fisheries and marine mammal predators of Chinook salmon. We focus on the consequences of spatial34

changes in ocean distribution, but our approach provides a general structure to link marine and freshwater35

components of anadromous species under climate change.36

Keywords: climate change, distribution models, Oncorhynchus, spatio-temporal models, species range shifts,37

state-space models,38
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Introduction59

Global changes to environmental conditions have caused extensive changes in the distribution and abundance60

of species worldwide (Poloczanska 2016). Shifts of individual species can have cascading effects throughout61

ecosystems (Gilman et al., 2010), affecting important processes from predator-prey interactions (Gilg et al.,62

2009) to plant-pollinator networks (Aguirre-Gutiérrez et al., 2016; Bartomeus et al., 2011). Because humans63

derive value from many species – either directly via harvest or indirectly via the ecosystem services they64

provide – shifting abundances have the potential to affect the availability of resources among groups as access65

to resources are reduced for some and expanded for others (Hunsicker et al., 2013; Perry et al., 2005; Selden66

et al., 2018). In marine systems, there is a general expectation that a warming climate will drive species67

distributions toward the poles (Cheung et al., 2010; Perry et al., 2005), though detailed analyses have shown68

substantial among-species variation in practice (Pinsky et al., 2013).69

Anadromous fish species may be sensitive to climatic changes as their bipartite life-history forces them to70

respond to climatic changes in both the freshwater and marine environments (Piou & Prévost, 2013). To71

date, investigations of the consequences of climate change have predominantly focused on the freshwater72

component of their life-history. Important responses of anadromous species to a changing climate include73

physiological shifts anticipated under warming temperatures (Muñoz et al., 2015) and low pH (Ou et al.,74

2015) in freshwater, phenological shifts in migration timing of both outmigrating juveniles (Cline et al., 2019;75

Otero et al., 2014; Scheuerell et al., 2009) and returning adults preparing to spawn (Finstad & Hein, 2012;76

Jonsson & Jonsson, 2009), and responses of populations to changing riverine hydrological regimes (Crozier et77

al., 2008; Jones et al., 2020; Sturrock et al., 2020). However, oceanic environments comprise the majority of78

many anadromous species’ lifespans and favorable ocean conditions are an important determinant of growth79

and survival (Beamish & Mahnken, 2001; Duffy & Beauchamp, 2011); up to 90% of mass can be derived80

from ocean growth (Quinn, 2005). Oceanographic models suggest substantial changes to ocean temperatures81

and productivity will occur in the near future (Hu et al., 2017; Oliver et al., 2019). Links between broad82

oceanographic indices, abundance, and productivity have been extensively investigated (Cunningham et al.,83

2018; Friedland et al., 2000; Kilduff et al., 2015; Mantua & Hare, 2002) as have the effects of nearshore marine84

conditions during the transition from freshwater to the marine environment (e.g. Sharma et al., 2013; Su et85

al., 2004). However, the effects of a changing climate on the spatial distribution of anadromous fish in the86

ocean are poorly understood despite the fact that such shifts may have substantial consequences for both87

ecological communities and human economies. Many anadromous fish return to their rivers of origin and so88

their oceanic habitat is anchored, in part, by the location of river mouths. Thus anadromous species cannot89
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simply shift their marine habitat in response to ocean conditions and therefore they may be particularly90

susceptible to climatic changes (Lassalle & Rochard, 2009).91

Pacific salmon (Oncorhynchus spp., Salmonidae) are well known for their long-distance migrations from their92

rivers of origin to ocean feeding grounds. Chinook salmon (O. tshawytscha) in particular swim thousands of93

kilometers in the ocean during their lives, crossing oceanographic and political boundaries, and supporting94

important commercial and recreational fisheries throughout their range (Healey, 1991; Quinn, 2005). These95

long-distance migrations and broad distributions – they spawn in rivers from California to northern Alaska to96

Japan (Quinn, 2005) – make independent surveys to assess abundance and distribution particularly difficult.97

To our knowledge, no systematic survey spans the entire oceanic range of any salmon species. The absence98

of fishery-independent surveys can greatly complicate the estimation of distributional shifts (Thorson et al.,99

2016). Existing rigorous descriptions of ocean distribution are dependent upon recoveries of tagged fish100

captured in fisheries (e.g. Chinook Technical Committee [CTC], 2019; Shelton et al., 2019; Weitkamp, 2010).101

Other estimates of ocean distribution for salmon occur at the species-level and rely on the spatial patterns102

of aggregate fisheries catch (i.e. not population- or stock-specfic catches; e.g. Cheung & Frölicher, 2020) or103

surveys from a portion of the species range. Analyses conducted at the species-level will therefore confound104

changes in ocean distribution with both the covariation in abundance among component salmon stocks (e.g.105

Kilduff et al., 2015) and shifts in the spatial distribution of fisheries effort.106

Fisheries have varied substantially in space and time in the northeast Pacific ocean over the past 50 years107

(CTC, 2019; Shelton et al., 2019), complicating the process of identifying shifts in ocean distribution. Specifi-108

cally, any shifts in the patterns of tag recoveries could be caused by either a true shift in ocean distribution or109

changes to the location and intensity of fisheries. Historical shifts in fisheries effort have largely been driven110

by changes in Chinook salmon availability – either as a result of changes to the conservation status of some111

populations or shifts in hatchery practices for some regions. Fisheries for Chinook salmon predominantly tar-112

get a subset of stocks from particular river systems and so aggregate measures of Chinook salmon catch are113

not reliable indicators of coast-wide abundance or distribution (CTC, 2019). Previous studies have indicated114

a lack of annual variation in broad-scale Chinook salmon ocean distributions (Norris et al., 2000; Weitkamp,115

2010), suggesting little potential for distributions to shift in response to future climate change (Weitkamp,116

2010). However, estimates of ocean habitat based on thermal tolerance have suggested strong changes to117

suitable ocean habitat in a warming ocean across the north Pacific Ocean (Abdul-Aziz et al., 2011) and a118

study of a single stock distributed along the California and Oregon coasts showed a relationship between119

fishery contact rates and water temperature (Satterthwaite et al., 2013). Because salmon home faithfully to120

their natal regions and management is applied at the level of individual stocks (Pacific Fisheries Management121
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Council [PFMC], 2019), it is important to understand stock-specific responses to climate conditions as well122

as the response at the species level when aggregated across stocks.123

Here, we provide a large-scale, integrated estimate of how Chinook salmon ocean distributions of individual124

stocks respond to a variation in ocean conditions. We construct a population dynamics model that includes125

all of the major fall-run Chinook salmon in the northeastern Pacific Ocean - fall-run Chinook salmon are126

the numerically dominant runs of salmon along the coasts of California, Oregon, Washington, and British127

Columbia - and provide stock- and year-specific estimates of ocean distribution. Our model extends and128

improves an ocean distribution model based on recoveries of tagged Chinook salmon (Shelton et al., 2019)129

by adding 20 years of recovery data, accommodating annual variation in distribution, and linking ocean130

distributions to observed sea surface temperatures (SST). We then use future projections of the ocean131

temperature to generate predictions of ocean distribution for six of the largest fall-run Chinook salmon132

stocks, and provide estimates of each stock’s association with SST. Finally, we examine the relationship133

between climate scenarios and abundance to project abundance estimates and understand how aggregate134

Chinook salmon availability is projected to change among ocean regions.135

Methods136

Population Dynamics Model137

We present an overview of the model and data here with an emphasis on the specific methods relevant for138

estimating spatial distributions. Full descriptions of the statistical model and data sources are presented in139

the supplemental materials (Supplements S1, S2).140

We constructed a Bayesian state-space model to track the spatio-temporal population dynamics of 1,400141

tagged groups of Chinook salmon representing fish from 16 distinct origins between 1979 and 2015 (Table142

S2.1). State-space models separate the biological processes of populations (e.g. mortality, spatial distribution,143

maturation; the process model) from the observation of the population (e.g. fisheries catches; the observation144

models). This framework enables explicit accounting for varying levels of uncertainty in the data and missing145

data. We use data on the recapture of coded wire tagged (CWT) Chinook salmon from multiple fisheries146

(including both fisheries that target Chinook salmon and those where Chinook salmon are captured as147

bycatch) from California to Alaska (Fig. 1) to estimate the parameters of the model (tag data maintained148

by the Regional Mark Processing Center; www.rmpc.org). Specifically, the model uses the rate at which149

groups of CWT fish are recaptured in each fishery and then uses information from all fisheries jointly to infer150
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the abundance and distribution of each group. CWT recoveries are a function of four components (within151

a single ocean region and season): the abundance of the CWT group, the ocean distribution of the CWT152

group, the amount of fishery effort for each fishery, and the rate at which each fishery is sampled for CWTs.153

Thus changes in any of these four processes can affect CWT recoveries and our model accounts for all of154

these processes simultaneously for all ocean regions and seasons (see Supplement S1 for details).155

Each released group is comprised of Chinook salmon arising from CWT individuals spawned and reared at156

a single hatchery in a single year and released (predominantly as fingerlings [salmon released within a few157

months of hatching], though some yearling release groups are also included). These 1,400 hatchery-stage-158

year groups (hereafter release groups) can include more than one CWT tag code and represent a total of159

353 million Chinook salmon released between 1978 and 2010 (brood years 1977 to 2009; Tables S2.2, S2.3)160

and recovered in the ocean between 1979 and 2015 (an estimated 1.3 million recovered tags). As Chinook161

salmon originating from different rivers are known to have distinct ocean distributions (e.g. Healey, 1991;162

Shelton et al., 2019; Weitkamp, 2010), each release group was assigned to one of 16 origin regions ranging163

from California’s Central Valley to southern British Columbia (Table S2.2; fall-run Chinook salmon do not164

spawn in rivers north of southern British Columbia).165

Our model uses the ocean region, season, and fishery where recovery occurred as well as information about166

the fisheries effort and catch sampling for CWT to infer four main biological processes: 1) the mortality of167

juvenile fish prior to spring of age 2; 2) fishing mortality by age and ocean region from each fleet; 3) the168

spatial distribution of fish in the ocean and relationship between SST and ocean distribution; and 4) the169

age-specific loss of fish from the ocean due to maturation (salmon leaving the ocean and returning to their170

streams of origin to spawn). We track the abundance of fish from the spring of age 2 (defined as calendar171

year minus brood year) to fall of age 6, encompassing 19 seasonal time steps and 17 ocean regions (Fig. 1).172

We provide a table describing the fall-run Chinook salmon age classification used here in Table S1.1. As the173

majority of both fishing effort and tag recoveries occur during the summer, we focus on the distribution of174

fish during the summer season (June-July).175

While our model provides estimates of biological parameters for fish from all 16 origin regions (hereafter176

“stocks”), included in the model across all years, we focus on six stocks with the largest number of tagged177

fish in our dataset that contribute disproportionately to the major Chinook salmon fisheries along the178

west coast of North America (CTC, 2019; PFMC, 2019). We detail results for fall-run Chinook salmon179

from California’s Central Valley (hereafter “SFB”), the Klamath basin in northern California (“NCA”), the180

lower Columbia River fall-run Chinook (“LCOL”; also known as “tules”), the bright run from the middle181

Columbia River (“MCOL”), the upriver bright run from the Columbia River (“URB”), and the fall-run182
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Chinook salmon from the Snake River (“SNAK”; the largest tributary of the Columbia River). Together,183

these stocks comprise approximately 71% (250.9 million) of the CWT releases used in the model and include184

multiple release groups in each year, providing sufficient information to allow for robust inference about185

year-to-year patterns in ocean distribution and abundance. Additionally, these stocks are rarely found in the186

Salish Sea (Shelton et al., 2019), an inland sea poorly described by large scale oceanographic models used187

for future SST projections. We defer discussion of stocks that use the Salish Sea extensively to future work.188

Finally, these six focal stocks all have estimates of total population size over recent decades (see Supplement189

S4), allowing us to connect distributional changes to changes in both stock- and aggregate-level abundance.190

We conduct all of our data analysis in R (v3.6.1) and implement the statistical models in Stan (Carpenter191

et al., 2017; Gelman et al., 2015) as implemented in the R statistical language (rstan v2.19.3; R Core Team,192

2019; Stan Development Team, 2019).193

Ocean Distribution Models194

Chinook salmon distributions vary by season. We let θ̄r,l,s be the mean proportion of fish from stock r,195

present in ocean region l, at the beginning of season s. Across ocean regions, the proportions must sum to196

one because these represent the entire ocean extent:
∑

l θ̄r,l,s = 1. Fisheries activity and therefore where197

tag recoveries occur are spatio-temporally patchy (Supplement S2) and vary in their spatial precision. We198

divide the coastal ocean into 17 ocean regions (Fig. 1) defined largely by fishing regulation and political199

boundaries and assigned each CWT recovery to an ocean region. As in Shelton et al. (2019), within an ocean200

region, occurrence of Chinook salmon is assumed to be uniform. Among these ocean regions however, ocean201

distributions of Chinook salmon are assumed to be smooth – adjacent regions are more similar in abundance202

than distant regions, on average. Therefore we introduce a parameter for each stock, ocean region, and203

season, ξr,l,s that defines the proportional occurrence in an average year,204

θ̄r,l,s =
exp(ξr,l,s)∑
l exp(ξr,l,s)

(1)

We use a dimension reduction technique known as predictive process modeling (Banerjee et al., 2008; Finley205

et al., 2012; Shelton et al., 2019) to impose a smoothness constraint on ξr,l,s - adjacent spatial areas more206

correlated than distant areas (see Supplement S1 for details). We view the Salish Sea (ocean regions SGEO,207

PUSO, and SJDF) as distinct from the smooth distribution and treat these three regions separately.208

We then allowed the ocean distribution for each stock to deviate from this average distribution as a function209
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of regional ocean SST. Specifically, we used the Optimum Interpolation Sea Surface Temperature (OISST)210

dataset to derive season specific temperature series for each ocean region from 1982 to 2015 (Banzon et al.,211

2016; Reynolds et al., 2007). OISST did not provide reasonable temperature estimates for the Salish Sea, so212

we supplemented our data with direct observations of SST in those ocean regions (see Supplement S3). We213

calculated an anomaly for each ocean region-season combination by subtracting the among year mean so that214

each ocean region(l)-season(s)-calendar year(c) combination, Tl,s,c, had a time-series average of zero (Fig.215

1). We estimated a coefficient for each stock-ocean region-season, ψr,l,s, and therefore made proportional216

occurrence in ocean regions vary with SST,217

θr,l,s,c =
exp(ξr,l,s + ψr,l,sTl,s,c)∑
l exp(ξr,l,s + ψr,l,sTl,s,c)

(2)

The anomalies, Tl,s,c, are the deviation from average SST and therefore ψr,l,sTl,s,c determined the effect of218

this deviation on ocean distribution. This form is very flexible. Even though it is linear in terms, it allows219

many possible relationships between proportional distribution and SST.220

Stock-Specific Temperature Associations221

To characterize the SST associated with each stock in each year, we calculated a weighted mean SST from222

the OISST data and our estimates of distribution. We use our estimates of proportional distribution as223

weights and then summarize this weighted mean SST to describe the temperature association for each stock224

among years (1982-2015) during the summer season. This allows us to compare the SST association among225

stocks.226

Ocean Distributions in Future Ocean Conditions227

We used a global circulation model (GCM) - the medium resolution Max Planck Institut Earth System228

Model (Giorgetta et al., 2013; Jungclaus et al., 2013) - to provide predicted temperatures for SST for each229

season and ocean region. We used predictions from the RCP45 scenario (hereafter MPI45; see Edenhofer230

et al., 2014) and mapped predictions to our 14 ocean regions outside the Salish Sea (see Supplement S3).231

We chose Representative Concentration Pathway (RCP) 4.5 over two other available MPI-ESM-MR GCM232

scenarios, RCP2.6 and 8.5, because it represents a likely future of global carbon emissions (Thomson et al.,233

2011). Of the three alternative climate scenarios, RCP2.6 is the most optimistic, assuming CO2 emissions234

decline starting in 2020, and 8.5 is the most pessimistic, assuming CO2 emissions continue increasing until235

9This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



at least 2100. We felt RCP4.5 represented the most likely scenario of the three, given current circumstances236

and the fact that CO2 emissions are still rising (see also Supplement S3).237

We calculated season-ocean region means of SST from the 1982–2005 period from the MPI45 and then differ-238

enced that mean from the future projections in the MPI45 model (years 2025–2100) to produce temperature239

anomalies for each season-ocean region. These projected temperature anomalies are analogous to the OISST-240

derived values used in the estimation model (T in eq. 2) but T was derived from the years 1982-2005 rather241

than 1982-2015. To account for this difference in time-frame, we calculated the average temperature using242

OISST from 1982-2005, derived an offset between this value and the average for 1982-2015, and included this243

offset to ensure that MPI45 and T had identical reference levels. We then summarized predicted average244

temperature anomalies for each season-ocean region in ten-year blocks centered on 2030, 2050, 2070, and245

2090 and used these projected anomalies to generate predicted spatial distributions for each of our focal246

stocks. We lacked predictions from the MPI45 model for the ocean regions in the Salish Sea. After examin-247

ing the predictions for the non-Salish Sea ocean regions, we elected to use the average predicted offset from248

these 14 regions as the offset for each of the three Salish Sea regions (Supplement S3).249

Population Size Estimates250

To understand how changes in SST may shift the abundance of Chinook salmon among ocean regions, we251

needed to combine our estimates of distributions (the proportion of the total ocean population of each stock252

in each ocean region) with estimates of stock-specific abundance. We estimated stock-specific abundances253

based on annual estimates of abundance for spawning or in-river returns for each of the focal stocks (see254

Supplement S4). We used information from the Pacific Fisheries Management Council (PFMC; SFB and255

NCA stocks; PFMC, 2019) or from the Pacific Salmon Commission’s Chinook Technical Committee (CTC;256

LCOL, MCOL, URB, SNAK stocks; CTC, 2019). The models used by these management entities make257

different assumptions from our model and each other but they provide the best available abundance estimates,258

and are considered sufficiently reliable for use in management. They should adequately serve our purpose of259

approximating abundances for the focal stocks. They also provide total stock abundance (both hatchery and260

non-hatchery produced fish) whereas our model focuses on tagged fish exclusively. Total run (hatchery plus261

natural) abundance is a more appropriate metric of these runs than abundances that can be derived from our262

model estimates of juvenile survival (see also Supplements S4 and S5). To marry output from these fisheries263

management models to our distribution estimates, we first extracted estimates of total in-river population264

size - the abundance of fish that escaped ocean fisheries and either reached their spawning location or were265
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captured by river fisheries. We then used estimates of annual ocean exploitation rates to expand in-river266

population size to the beginning of the summer season (June 1) to match our ocean distribution model (see267

Supplement S4). Importantly, this estimate includes multiple age-classes and represents only the fish that268

would mature, not the entire ocean population which includes individuals who will mature and spawn in269

later years. While the fraction of the ocean population represented by this maturing adult population will270

vary year-to-year due to varying cohort strength and other factors, on average the maturing adults should271

be a proportional representation of the ocean abundance.272

To estimate ocean region-specific abundances, we first drew abundances from each stock from a joint dis-273

tribution of abundances across stocks, to account for the observed covariation in abundance among stocks274

(Supplement S4). We then apportioned each stock’s total abundance among the different ocean regions275

using the estimated proportional distribution (the θs) corresponding to the current average (T = 0) and276

future SST for 2030, 2050, and 2070. We drew 1,000 samples from the posterior distribution of θ and 1,000277

draws from the abundance distribution to propagate the uncertainty in distribution and abundance for each278

stock. We summarized both the proportional change in abundance for each stock and the overall change in279

predicted aggregate abundance. While we apportioned salmon into the 17 ocean regions, we summed across280

these regions to describe the total abundances into a smaller number of areas corresponding to major fishing281

or geographic regulatory areas (central California [regions MONT and SFB], northern California [MEND282

and NCA], Oregon [SOR and NOR], Salish Sea [SJDF, PUSO and SGEO], Washington [COL and WAC],283

southern British Columbia [SWVI and NWVI], northern British Columbia [CBC and NBC], and Alaska284

[SSEAK and NSEAK]; Fig. 1).285

Results286

Oceanography287

We illustrate latitudinal patterns in ocean temperature by season from OISST data for our 14 ocean regions288

(1982-2015; excluding the three Salish Sea regions: SJDF, PUSO, SGEO; Fig. 1). Of particular interest289

is that while the winter and spring seasons show the expected spatial trend - declining SST from south to290

north - the summer and fall patterns exhibit a notable trough in SST in the southern portion of the range291

along the coast of northern California (regions MEN, NCA).292

Additionally, we plot the summer temperature deviations from 1982-2015 for each ocean region and the293

projected temperatures for the ten year average deviation (±1 SD) for 2030, 2050, 2070, and 2090 derived294
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from MPI45. As SSTs are driven in part by basin-scale oceanographic processes, historical temperature de-295

viations are spatially synchronous with a coastwide median pairwise correlations of 0.47 and some adjacent296

ocean regions having correlations of greater than 0.90 (Fig. S3.4). While projected temperatures uniformly297

increase for all four future years, no future average temperature is beyond the range of observed temperature298

deviations between 1982 and 2015 (Fig. 1C). Future average ocean conditions during the summer are gener-299

ally comparable to extreme El Niño events observed since 1982 (e.g. 1983, 1997; see NOAA, 2020), though300

by 2070 most average temperature anomalies are expected to exceed SST observed since 1982 especially in301

the northern portion of the range (Fig. 1). In future scenarios (including and beyond 2070), individual years302

are expected to significantly exceed the range of historically observed SST anomalies.303

Population Dynamics Model304

The estimation model converged and mixed well (R̂ convergence diagnostics: R̂ < 1.01 for all parameters;305

Gelman & Rubin, 1992; Vehtari et al., 2020). This is a large model, incorporating over 756,000 observations of306

presence/absence and 47,000 of positive CWT recoveries. Additional descriptions of model fit and diagnostics307

are presented in Supplement S5.308

Ocean Distribution309

The six focal stocks exhibited substantial differences in average ocean distribution and the model estimated310

some distributional variation as a function of SST (Fig. 2). For clarity of plotting, we excluded the three311

Salish Sea ocean regions in all distributional plots and focused on the ocean regions outside the Salish Sea.312

All six stocks had individual ocean regions for which the proportion varied by more than 5% among years.313

However, in no case did the distribution radically shift in response to SST; the six stocks broadly followed314

their average distribution with a constrained amount of variability. In general, the California Central Valley315

(SFB) and Klamath (NCA) stocks were centered near the coastal location of their river of orign (ocean316

regions SFB and NCA, respectively; Fig. 2). The Columbia river stocks were estimated to be distributed317

substantially north from their river of origin (COL; Fig. 2). The URB stock showed the smallest distribution318

shifts in response to SST.319

There were differences in summer ocean distribution between cool (e.g. 2008) and warm (e.g. 1997) years320

(Fig. 3). For the Klamath (NCA), and four Columbia river stocks (LCOL, MCOL, SNAK, URB), ocean321

distributions shifted north in a warm year (1997) relative to a cool year (2008; see also Fig. 1). In general322

the difference between a cool and a warm year amounted to the ocean region with the largest proportion of323
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fish shifting one ocean region north (a shift on the order of 100-200 km). In contrast, SFB shifted to become324

more concentrated in the southernmost ocean regions (MONT and SFB), with accompanying declines in325

the northern California regions of MEN and NCA, and slightly increasing in the northern edges of its range326

(Washington state (WAC) and southern British Columbia (SWVI); Fig. 1).327

Stock-Specific Temperature Associations328

We show substantial variation in weighted mean summer SST experienced by individual fish, based on their329

distribution across ocean regions with different water temperatures both among stocks and within stocks.330

Among stocks, the median weighted mean SST ranged nearly 2.7 C from 9.5 C for the URB stock to 12.2331

C for SFB (Fig. 4). Within a given stock, the weighted mean SST among years varied from 1.7 C (SNAK;332

maximum weighted SST minus minimum weighted SST) up to 3.1 C (NCA) among years, indicating both333

among stock and among year variability in the association between SST and ocean distribution. For reference,334

the simple average SST (all ocean regions weighted equally) was 11.9 C with a range of 2.2 C (Fig. 4).335

Future Ocean Distribution and Abundance336

For all stocks, future predicted average summer ocean distribution for 2030 and 2070 appear generally similar337

to the distribution of a strong El Niño year (1997; Fig. 3). In most cases, estimates of stock-specific ocean338

distributions for both 2030 and 2070 diverged substantially from cool years (e.g. 2008) and the distribution339

for a year with the average climatology from 1982-2015 (“Mean” in Fig. 3). Predictions for 2070, when SST340

are predicted to mostly exceed the observed range of temperatures from 1982-2015, are more uncertain than341

the predictions for 2030 which fall clearly in the range of observed SST deviations (Fig. 1).342

We combined historical abundance estimates of spawning Chinook salmon with predicted changes in ocean343

distribution to understand how aggregate abundance across these six focal stocks may shift in response to344

projected oceanic conditions. On average these stocks contribute about 1.2 million maturing adults a year (sd345

= 0.52 million; range 0.50 - 2.33 million). We show ocean regions have stock-specific patterns of loss and gain346

in their ocean distribution (as measured by the difference between the summer distribution under average347

temperatures from 1982-2015 and projected average temperatures in 2050; Fig. 5A). Ocean regions that348

have decreased abundance for one stock generally show an increase for one or more other stocks (see Table349

S5.1 for uncertainty bounds for results from Fig. 5A). Notable exceptions are northern British Columbia,350

which are predicted to remain stable or increase for all stocks, and northern California which is predicted to351

decrease. In terms of aggregate abundance across stocks, this does not mean that shifts in ocean distribution352
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simply balance out because the focal stocks do not provide equivalent numbers of maturing adults. The353

annual number of maturing adults ranged from a high of 426 thousand on average from the SFB stock354

to 33 thousand for the SNAK stock (Fig. 5A; Supplement S4). Maturing adult abundances were mostly355

positively correlated among stocks (pairwise Pearson correlation range from -0.2 to 0.8 but only one of 15356

pairwise correlations was negative; Fig. S4.2) indicating that a high abundance year in one stock generally357

corresponded to a year of high abundance in other stocks. The large uncertainty bounds in Fig. 5C for both358

current and future ocean conditions primarily reflect the substantial year-to-year variation in abundance of359

maturing fish.360

After accounting for differences in relative abundances as well as the covariation among stocks in maturing361

adult abundance (see Supplement S4), we predict in 2050 aggregate abundance for these six stocks will362

increase or remain largely unchanged in northern British Columbia and Alaska (changes of 33[23, 49], and363

−6[−14, 0.5] thousand fish, respectively, median[interquartile range]). This is a median change of 16% and364

−2% over current conditions, respectively; Fig. 5C). At the far southern extent of the area, there are365

substantial changes, with predicted increases in central California (44[24, 74] thousand, +21%) and declines366

in northern California (−62[−95,−40] thousand, −33%). These changes occur primarily because of the367

southerly distributional shift of the abundant SFB stock. While Oregon and southern British Columbia368

are predicted to be largely unchanged (both change less than 10%), Washington is predicted to decline369

substantially (−26[−36,−19] thousand, −24%), though this change declines slightly to −16% if we account370

for the few thousand fish from LCOL and SNAK stocks estimated to be present in the Strait of Juan de371

Fuca (Supplement S5). Qualitatively, projections for 2030 and 2070 show the same patterns of change but372

differ in magnitude (Figs. S5.16, S5.17).373

Discussion374

We integrated disparate data sources spanning over 25 degrees of latitude and 40 years to provide estimates375

of stock-specific ocean distribution for Chinook salmon and how ocean distributions will shift with SST.376

Our results show that individual stocks vary substantially in their current distribution, have stock-specific377

relationships to SST, and respond meaningfully to observed historical SST variation. However, estimated378

responses to SST are not uniform in direction or magnitude, with one stock (SFB) estimated to shift distribu-379

tion southward in response to SST warming while another (MCOL) shifted strongly northward and a third380

(URB) showed a minimal response to SST (Figs. 3 and 5). Finally, we married stock-specific distributions381

with future temperature projections and estimates of abundance to predict distributional shifts in aggregate382
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Chinook salmon abundance among ocean regions.383

We predict that changes in the distribution of Chinook will result in differential availability of Chinook384

salmon to resource users in the future. Chinook salmon support major commercial, charter, and recreational385

fleets across their range as well as being a major prey item for marine mammal predators including harbor386

seals (Phoca vitulina, Phocidae), sea lions (Zalophus californianus and Eumetopias jubatus, Otariidae), and387

fish eating populations of killer whales (Orcinus orca, Delphinidae) including the endangered Southern388

Resident Killer Whale population (Ford & Ellis, 2006; Hilborn et al., 2012). We show that predicted389

shifts in abundance are not straightforward, with both northern ocean regions (northern British Columbia)390

and southern ocean regions (central California) predicted to have increased abundance while in between391

there are ocean regions of predicted decline (northern California, Washington), and others with almost no392

change (Oregon, southern British Columbia, Alaska). Predicted changes in abundance can be substantial393

for an individual ocean region (in some cases an approximate 25% change over current abundances). The394

projected increase in central California abundance, driven primarily by a southern shift in the SFB stock,395

might seem unexpected, especially since this is already the southern extreme of the species range. However,396

an independent modeling effort also estimated southern shifts in SFB spatial distributions when conditions397

were warmer (Satterthwaite et al. 2013). The Central California ocean region contains multiple areas398

(e.g. Monterey Bay and the Gulf of the Farallones) where prevailing winds and coastal topography creates399

retention areas enriched by coastal upwelling (Hickey and Banas 2008), and these hotspots of productivity400

may provide refuges in the face of generally declining productivity along the coast. We emphasize that our401

results are not inclusive of all Chinook salmon populations present in these waters and so are not a complete402

picture of all Chinook salmon in these waters, but they do represent a majority of individuals in many ocean403

fisheries (see below) and suggest that individual shifts in stock ocean distribution will translate to substantial404

shifts in aggregate abundance. Compiling information on additional Chinook salmon groups – e.g. spring,405

summer, and winter run populations – to more fully understand aggregate distributional shifts is a major406

direction for future work.407

Predicted shifts in ocean distributions will result in changing availability of Chinook salmon to ocean fisheries.408

Major commercial fisheries exist in each state and province and different permits are required to participate409

in fisheries in different states and provinces; fishers cannot easily relocate from, say, Washington to British410

Columbia or from California to Washington to track shifting Chinook salmon abundance. Even within a411

single management jurisdiction, shifting distributions may have significant consequences. For example, the412

predicted divergence between SFB and NCA may make it easier to target abundant SFB when NCA are rare,413

or vice versa. However, the predicted distributional shifts may create new problems as well. For example, a414
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southward shift in SFB would increase its overlap with the endangered Sacramento River Winter Chinook415

salmon (Satterthwaite et al., 2013). Allocation among these fishing areas and between different fishing416

sectors (e.g. commercial or recreational) is determined by a complex web of management bodies and permits417

that include an international body (the Pacific Salmon Treaty), an inter-state body (the Pacific Fisheries418

Management Council), state- and province-specific managements groups (representing Alaska, Washington,419

Oregon, Idaho, California, and British Columbia), and Tribal Nations in the United States and First Nations420

in Canada who are co-managers of these resources. Avoidance of Chinook salmon bycatch is also an important421

consideration of pelagic trawl fisheries for Pacific hake (Holland & Martin, 2019) and walleye pollock (Ianelli422

& Stram, 2015). Such complexity emphasizes the broad importance of Chinook salmon culturally and423

economically in the northeast Pacific Ocean. At present, no fisheries affecting salmon incorporate explicit424

ocean distribution models for Chinook salmon or include any oceanographic effects on distribution. Our425

work suggests that integrating ocean distribution information warrants consideration for future management426

scenarios in a warming ocean (Lewison et al., 2015).427

An important caveat for our simulations is that we assume the abundance of the focal stocks is represented428

by the abundance in recent decades (1983 to present). While this assumption allows us to identify predicted429

shifts that stem solely from ocean climate, it is likely that future climate conditions will differentially affect430

the productivity of individual stocks through changes at various stages in the lifecycle (Crozier et al., 2008;431

Jones et al., 2020; Oke et al., 2020). Currently, stock-specific abundance projections are not available for all432

stocks, but a broad literature suggests climate change will affect the productivity and population dynamics433

for many salmon populations during freshwater life-stages (Battin et al., 2007; Crozier et al., 2008; Kovach434

et al., 2015, Morita et al., 2014). Future production of Chinook salmon from hatcheries may also change435

substantially from current levels; hatchery production has fluctuated over the past 50 years for many Chinook436

salmon populations (Huber & Carlson, 2015; Nelson et al. 2019). Our model provides a framework that can437

be used in the future to link changes in freshwater productivity and hatchery practices to ocean distribution438

and availability.439

An additional caveat to our analysis is its dependence on data from hatchery-origin fish, which dominate440

CWT data, to make inferences about stocks consisting of a composite of hatchery- and natural-origin fish.441

Although Beacham et al. (2020) found fine-scale differences in the distributions of geographically proximate442

coho salmon (O. kisutch) populations, they noted that Weitkamp and Neely (2002) did not find differences443

between hatchery- and natural-origin coho salmon distributions at a resolution more comparable to our study.444

Similarly, generally minor differences have been found between the ocean distributions of natural- versus445

hatchery-origin Chinook salmon when such comparisons are possible (Satterthwaite et al., 2018; Sharma &446
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Quinn, 2012; Weitkamp, 2010). Additionally, the SFB, LCOL, MCOL, and SNAK stocks are predominantly447

of hatchery-origin (see Supplement S3 of Shelton et al., 2019, noting that SNAK is classified within the448

UCOL stock there). Minimal differences have been documented in the distribution of hatchery- versus449

natural origin URB fish (Sharma & Quinn, 2012), and distribution inferences for the genetically identified450

composite NCA stock were similar to distributions inferred from hatchery-origin CWT alone (Satterthwaite451

& O’Farrell, 2018).452

Our results also have general implications for estimating suitable or optimal habitat based on observed453

relationships between SST and abundance and for projecting distributional change under oceanographic454

change. Many studies attempt to identify the relationship between SST and estimates of abundance which455

use this relationship to project distribution under future ocean conditions (e.g. Abdul-Aziz et al., 2011;456

Cheung et al., 2010; Cheung & Frölicher, 2020). SST is one of the main oceanographic covariates used in457

such analyses (e.g. Hazen et al., 2018; Rogers et al., 2019). We show that the weighted mean SST varied458

among stocks by 2.7 C, suggesting there is not a fundamental, physiologically driven SST that universally459

predicts Chinook salmon abundance and occurrence. Tagging data from a single stock of Atlantic salmon460

also suggest flexibility in their thermal habitat use (Strøm et al., 2019). Conducting a species-level analysis461

that ignores stock-specific differences in distribution (e.g. Abdul-Aziz et al., 2011; Cheung & Frölicher,462

2020) would yield errant projections of future distribution. In the absence of information on the ocean463

distribution of all Chinook salmon stocks (see below for more detail), it is not possible to determine the464

magnitude or even the direction of error introduced by ignoring among-stock variation in ocean distribution.465

Similar phenomena seem likely to occur for other salmonids and we speculate this may be a more prevalent466

feature of anadromous species than strictly marine species. We do not suggest that Chinook salmon as a467

species do not track particular oceanographic conditions – potentially including temperature, salinity, and468

productivity – but rather that SST may not be a particularly good descriptor of the true environmental469

signal they are tracking. Ideally, we would know the identity of such oceanographic features and develop a470

distribution model using that set of variables. Unfortunately, there is a relatively limited set of historical471

ocean observations that are available to link to species distributions and SST comprises the longest and472

most complete historical time-series which is also is available from future ocean projections. Retrospective473

analyses of ocean biogeochemical models may be useful in expanding the suite of variables available to ocean474

distributions and environmental variables as they have in other ocean regions (e.g. Fernandes et al., 2020).475

We anticipate using alternative environmental covariates in or different mathematical forms for equation 2 to476

improve estimates of Chinook salmon ocean distribution. Nevertheless, model diagnostics showed that the477

current formulation including SST deviations as covariates substantially improved model fit (Table S5.2).478
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Our study for distribution for all fall-run Chinook salmon stocks that have a significant CWT program479

and makes projections for six focal stocks for which we have adequate tagging data as well as accessible480

abundance data. Genetic analyses suggest that the six stocks included here comprise 90% of commercial481

catch in central California (Satterthwaite et al., 2015), approximately 75% of fish in northern California and482

Oregon (Bellinger et al., 2015), approximately 50% of fish caught along the outer coast of Washington state483

(Moran et al., 2018), and at least 25% of Chinook caught in northern British Columbia (Winther & Rupert,484

2016) and southeastern Alaska (Gilk-Baumer et al., 2013). Other fall-run stocks either are common in the485

Salish Sea (for which we have limited future oceanographic predictions), have limited or uncertain abundance486

estimates, or lack replicate CWT release and recovery data to derive reliable estimates of SST-distribution487

relationships. Future work should aim for a full accounting of all Chinook salmon stocks from California to488

Alaska. This will require gathering data from additional fishing fleets to extend ocean distribution estimates489

into the Gulf of Alaska (specifically information on trawl bycatch), collating CWT data on other run types490

such as spring- and summer-run Chinook which predominate in the rivers of British Columbia and Alaska,491

and incorporating genetic data from captured salmon to allow inclusion of stocks that entirely lack CWT or492

are only sparsely tagged.493
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Figures744

Figure 1. A: Map of the study area with ocean region borders and region labels. Dots designate the745

location of hatcheries producing Chinook salmon used in the the study estimation. B: Mean among-year746

temperatures ±1SD for each season and 14 ocean regions along the coast between California and Alaska747

(excluding the three Salish Sea regions: SJDF, PUSO, SGEO). C: Summer SST anomalies for each ocean748

region from 1982 – 2015 derived from OISST and projected mean ± 1 SD anomalies for ten year period749

centered on 2030, 2050, 2070, and 2090 from the MPI45 global circulation model.750

Figure 2. Estimated summer ocean distribution for six focal stock (SFB: California Central Valley fall-run;751

NCA: Klamath River fall-run; LCOL: Lower Columbia tules; MCOL: Middle Columbia brights; SNAK: Snake752

River fall brights; URB: Columbia River upriver brights). Black line and ribbon shows estimated among-753

year average proportional distribution (90% CI) (ribbon may be smaller than the line). Point estimates for754

distribution in individual years are shown in thin lines.755

Figure 3. Estimated summer ocean distribution for six focal stocks under the average climatology for756

1982-2015 (Mean), a warm summer (1997), a cool summer (2008), and projected distribution under average757

projected summer SST conditions for 2030 and 2070. Mean and 90% CI shown.758

Figure 4. Weighted mean SST for the six focal stocks during the summer season. The “EQUAL” category759

is the weighted mean SST using equal weights for all of the 17 ocean regions. Points represent weighted760

mean temperature for individual years, boxplots show median, interquartile range, and 95% whiskers among761

years.762

Figure 5. Estimated proportional change in summer ocean distribution for focal stock between current763

conditions and 2050 (top left). A: Historical maturing adult Chinook salmon abundances (1983-2015) for764

focal stocks (mean, interquartile range, and individual years shown). B: Cumulative abundance for focal765

stocks in ocean regions outside the Salish Sea under average (mean, interquartile range, and 90% interval). C :766

Projected change in cumulative abundance across all six focal stocks in 2050 relative to average conditions767

(1982-2015) due to climactic driven distributional shifts. Points are means and boxplots show median,768

interquartile range, and 95% whiskers.769
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